免费国产自久久久久三四区久久_久久99性xxx老妇胖精品_欧美女女_老司机深夜福利网站_91影视免费版在线看_91九色porny首页最多播放

position: EnglishChannel  > Global Journal Observatory> Journal of Tissue Engineering: Advancing Research, Clinical Impact for Public Health

Journal of Tissue Engineering: Advancing Research, Clinical Impact for Public Health

Source: Science and Technology Daily | 2024-12-17 15:46:53 | Author: Jonathan Knowles

Tissue engineering is a biomedical engineering discipline that uses combinations of engineering, cells, materials and biochemical cues to restore, maintain, improve or replace different types of biological tissues. As the understanding of how these factors interplay deepened, the research field of tissue engineering rapidly expanded. So, in order to disseminate the new discoveries in the field, a number of new journals were established. Today, we are starting to see the development of tissue engineered products becoming available and used clinically, and this includes products for hard and soft tissue reconstruction and augmentation for improved clinical outcomes.

The Journal of Tissue Engineering (JTE) was set up in 2010, when Sage Publishing realized it was a rapidly expanding research field. I was asked to set up the journal as I had had some success as editor-in-chief of the Journal of Biomaterials Applications with Sage, and this seemed to be an opportune moment to move into the open access publishing arena.

The JTE aims to publish papers specifically in tissue engineering, as opposed to more cell-focused journals which publish predominantly regenerative medicine or cell biology. We publish papers with an applied focus that are closer to the clinical problem — either in terms of application to the patient or with models that more closely recapitulate the actual cellular environment in the body. Two excellent examples are the development of organ on a chip models and the development of processing methods for extracellular vesicles for therapeutic use.

The JTE prides itself on having highly active and responsive editors to help the authors through the publication journey. We also have a rigorous level of peer review to ensure only papers of the highest quality are published.

Early on, Professor Hae-Won Kim at Dankook University in South Korea, joined as co-editor-in-chief. For many years we have also received strong support from Matt Dalby at Glasgow University and Wojciech Chrzanowski at Sydney University. All of them and many others have helped contribute to shaping the journal to make it the success that it is today.

Of particular note is the transition towards more freely available open access publishing. This has transformed the academic landscape, making work much more freely available, and this is clearly reflected in JTE's really high levels of downloads and citations.

We have tried to steer the journal along a path of academic excellence, endeavoring to publish only the leading papers, rather than publishing incremental papers. We have tried to determine the papers that really represent a ground-breaking change in the field. This can sometimes be difficult, especially with the advent of very advanced large scale and/or high throughput measurement methodologies such as genomics and proteomics, so prevalent today in biology.

However, we have endeavored to analyze each paper to ensure it remains true to the journal's subject area. We have also tried to identify areas that are in the early stages of development and expansion, and have published Special Collections to support these areas. Such topics include extracellular vesicles and additive manufacturing. These Special Collections have proven to be highly successful, with large numbers of downloads and subsequent cites. They are specifically aimed at new and emerging topics to attract submissions from world-leading authors.

A significant number of submissions to the journal come from China. It is excellent to see the rapid development in the science being carried out in China, driven by a large-scale investment from the government and the private sector.

One aspect of these submissions that we have seen occurring is the use of these high throughput methods to provide large datasets and subsequent deep analysis of this data. This type of analysis is relatively unique due to the high cost, but gives important insights into the control and regulation of tissue and how these might be utilized in tissue engineering approaches. One factor that seems to be particularly strong in papers from China is the clear integration of clinical and non-clinical colleagues, and this has contributed hugely to the basic understanding of a disease state and the subsequent development of a coherent tissue engineering strategy to repair the defective tissues.

The article is written by Jonathan Knowles, who is the editor-in-chief of the Journal of Tissue Engineering and professor of Biomaterials Science at the Eastman Dental Institute, University College London, UK.

Journal Review

Since the concept of tissue engineering was established by Robert  Langer and Joseph P. Vacanti in 1987, it has rapidly developed as an emerging technology. In 2000, it was listed as the top 10 popular professions for the 21st century by the Time magazine. People hope to make it possible in the near future to replace damaged human organs as easily as replacing mechanical parts.

The core of tissue engineering research is to establish three-dimensional composites made of cells and biomaterials, essentially constructing living tissues with vitality to replace damaged tissues and organs. This aims to achieve permanent replacement through the reconstruction of morphology, structure and function. With the development of life sciences, biomaterials, and engineering technology, tissue engineering is about to become, or is already becoming, an effective treatment method for tissue and organ failure, marking the entry of medicine into a new era of manufacturing tissues and organs.

Compared to research focused on the cellular level, the Journal of Tissue Engineering prioritizes clinically oriented and application-focused research. It also keeps an eye on emerging topics, encouraging researchers in basic research to develop new technologies based on clinical needs, thereby promoting the advancement of the frontier fields of tissue engineering.

—— Gu Ning, member of the Chinese Academy of Sciences and professor of the Nanjing University & Li Yan, associate professor of the Southeast University.

Editor:CHEN Chunyou

Top News

Jointly Protecting People's Rights in Digital Era

?Emerging technologies like AI, big data and the Internet of Things are rapidly reshaping the world in this era of digital intelligence. However, they are also bringing challenges to human rights, which makes joint efforts essential. Science and Technology Daily spoke with international experts on these issues against the backdrop of the 2025 China-Europe Seminar on Human Rights hosted by the China Society for Human Rights Studies and Cátedra China Foundation in Madrid, Spain, on June 25 on the theme "Human Rights in the Era of Digital Intelligence."

First Human Clinical Trial of Invasive BCI in China

A major breakthrough in neurotechnology has been achieved with the successful completion of China's first-in-human clinical trial of an invasive brain-computer interface (BCI) system. With that China becomes the second country in the world to reach the clinical stage in this field.

抱歉,您使用的瀏覽器版本過低或開啟了瀏覽器兼容模式,這會影響您正常瀏覽本網頁

您可以進行以下操作:

1.將瀏覽器切換回極速模式

2.點擊下面圖標升級或更換您的瀏覽器

3.暫不升級,繼續瀏覽

繼續瀏覽
主站蜘蛛池模板: 2019久久综合网 | 777爽死你无码免费看一二区 | 久久久中文字 | 欧美精品久久久久久久久久 | 韩日一区二区三区 | 日韩精品无码免费专区午夜 | 一级做a爰性色毛片免费视频 | 亚洲va久久久噜噜噜久久 | 国产精品无码在线 | 国产麻豆精品a在线观看 | 成人av一级| 边做边爱边吃奶叫床的视频 | 成人高潮a毛片免费观看网站 | 国产综合色在线播放 | 久久国产精品不只是精品66 | 在线免费观看成年人视频 | 一区二区三区四区国产精品 | 99精品免费久久久久久久久日本 | 久久久久久免费 | 高清视频在线播放 | 一级毛片看 | 国产又粗又硬又黄视频免费着 | 亚洲 久久 | 久久久久一区二区三区四区五区 | 国产网站免费 | 欧美精品亚洲日韩aⅴ | 在线中文字幕av | 好姑娘国语免费高清观看 | 精品久久中文 | 国产精品网站在线观看 | 少妇的肉体AA片免费 | 不卡视频一二三区 | 亚洲成人网站在线观看 | 国产精品香蕉在线观看首页 | 黄色一级片在线播放 | 国产一级a特黄大片做受在线观看 | 米奇影音777 | 国产午夜精品一区理论片 | 国产精华一区二区三区 | 亚洲深深色噜噜狠狠爱综合网 | 精品99免费|